1 -. A la entrada de la escuela, se les aplicó a 156 niños una encuesta respecto a sus juguetes favoritos.
La encuesta arrojó los siguientes resultados:
▪ A 52 niños les gustaba el balón; a 63 les gustaban los carritos; a 87 les gustaban los videojuegos.
▪ Además algunos de ellos coinciden en que les gustaba mas de un juguete: 26 juegan con el balón y carritos; 37 juegan con carritos y videojuegos; 23 juegan con el balón y los videojuegos; por ultimo 7 expresaron su gusto por los tres.
a) ¿A cuántos niños les gusta otro juguete no mencionado en la encuesta?
b) ¿A cuántos niños les gusta solamente jugar con los videojuegos?
c) ¿A cuántos niños les gusta solamente jugar con el balón?
2-.
La secretaría de educación municipal requiere la provisión de 29 cargos docentes en las siguientes áreas: 13 profesores en matemáticas, 13 profesores en física y 15 en sistemas. Para el cubrimiento de los cargos se requiere que: 6 dicten matemáticas y física, 4 dicten física y sistemas y 5 profesores dicten matemáticas y sistemas.
Determinar:
a) ¿Cuántos profesores se requiere que dicten las 3 áreas?
b) ¿Cuántos profesores se requiere para dictar matemáticas únicamente?
c) ¿Cuántos profesores se requiere para dictar matemáticas y sistemas pero no física?
3-.Se encuesta a 150 familias consultando por el nivel educacional actual de sus hijos.
Los resultados obtenidos son:
▪ 10 familias tienen hijos en Enseñanza Básica, Enseñanza Media y Universitaria.
▪ 16 familias tienen hijos en Enseñanza Básica y Universitaria.
▪ 30 familias tienen hijos en Enseñanza Media y Enseñanza Básica.
▪ 22 familias tienen hijos en Enseñanza Media y Universitaria.
▪ 72 familias tienen hijos en Enseñanza Media.
▪ 71 familias tienen hijos en Enseñanza Básica.
▪ 38 familias tienen hijos en Enseñanza Universitaria.
Con la información anterior, deducir:
- El número de familias que solo tienen hijos universitarios.
- El número de familias que tienen hijos solo en dos niveles.
- El número de familias que tienen hijos que no estudian.
Diagramas de Venn
1 -Un Diagrama de Venn es una representación gráfica, normalmente óvalos o círculos, que nos muestra las relaciones existentes entre los conjuntos. Cada óvalo o círculo es un conjunto diferente. La forma en que esos círculos se sobreponen entre sí muestra todas las posibles relaciones lógicas entre los conjuntos que representan. Por ejemplo, cuando los círculos se superponen, indican la existencia de subconjuntos con algunas características comunes.
Los diagramas de Venn fueron ideados hacia 1880 por
John Venn.
Operaciones con conjuntos:
En las
matemáticas, no podemos definir a un
conjunto, por ser un concepto primitivo, pero hacemos abstracción y lo pensamos como una colección desordenada de objetos, los objetos de un conjunto pueden ser cualquier cosa siempre que tengan una relación entre ellos, a los objetos de un conjunto se les llama
elementos o
miembros de dicho conjunto, por lo tanto un conjunto contiene a sus
elementos. Se representan con una letra mayúscula y a los elementos o miembros de ese conjunto se les mete entre llaves corchetes o parentesis. (
{,
}).
Dos
conjuntos se pueden combinar de muchas maneras distintas, por ejemplo, teniendo un conjunto de la gente que juega al fútbol y otro de la gente que juega a baloncesto podemos hacer muchas combinaciones como el conjunto de personas que juegan a fútbol o baloncesto, las que juegan a fútbol y baloncesto, las que no juegan a baloncesto, etc.
Unión: En las
matemáticas, no podemos definir a un
conjunto, por ser un concepto primitivo, pero hacemos abstracción y lo pensamos como una colección desordenada de objetos, los objetos de un conjunto pueden ser cualquier cosa siempre que tengan una relación entre ellos, a los objetos de un conjunto se les llama
elementos o
miembros de dicho conjunto, por lo tanto un conjunto contiene a sus
elementos. Se representan con una letra mayúscula y a los elementos o miembros de ese conjunto se les mete entre llaves corchetes o parentesis. (
{,
}).
Dos
conjuntos se pueden combinar de muchas maneras distintas, por ejemplo, teniendo un conjunto de la gente que juega al fútbol y otro de la gente que juega a baloncesto podemos hacer muchas combinaciones como el conjunto de personas que juegan a fútbol o baloncesto, las que juegan a fútbol y baloncesto, las que no juegan a baloncesto, etc.
Intersección: El símbolo del operador de esta operación es: ∩, y es llamado capa.
:Sean A y B dos conjuntos, la coincidencia de ambos (A ∩ B) es el conjunto C el cual contiene los elementos que están en A y que están en B.
Un elemento x pertenece a la coincidencia de los conjuntos
A y
B si, y sólo si, x pertenece al conjunto
A y x pertenece al conjunto
B, por lo tanto
Ejemplos
- Ejemplo: La coincidencia del conjunto de números pares y el conjunto de números impares sería el conjunto C={} o sea serían disjuntos.
- Ejemplo: La coincidencia del conjunto de personas que juegan a baloncesto y el conjunto de personas que juegan a fútbol es el conjunto vacío, osea serían disjuntos.
- Ejemplo: La coincidencia de A={3,7,8} y B={1,2,9} sería C={}, ya que {3,7,8}∩{1,2,9}={} por lo tanto A y B son disjuntos.
Ley de morgan: Teniendo presentes estas definiciones quizás sea entonces mucho más sencillo comprender el sentido de cada una de estas relaciones de Unión e Intersección de conjuntos, que se dan en base al Conjunto complementario, y que pueden ser descritas a su vez de la siguiente forma:
Ley de Morgan con respecto a la Unión
Esta Ley o propiedad matemática, según lo que indican las diferentes fuentes de Álgebra de Conjuntos, señala que siempre y en todo caso, el conjunto complementario de la Unión de dos conjuntos resulta ser equivalente a la intersección que puede ocurrir entre cada uno de los conjuntos complementarios de estos. Igualmente, esta propiedad o Ley de Morgan puede ser expresada matemáticamente de la siguiente forma:
(A ∪ B)∁ = A∁ ∩ B∁
Diferencia: El símbolo de esta operación es: \.
La diferencia consiste en eliminar de A todo elemento que esté en B, también se puede denotar con el símbolo de la resta A-B, por lo tanto, la diferencia de los conjuntos A y B es el conjunto C que tiene a todos los elementos que están en A, pero no en B.
También se le puede llamar a la diferencia de A y B: complementario de B con respecto a A.
Por lo tanto, un elemento pertenece a la diferencia de A y B si, y sólo si
Ejemplos
- Ejemplo: La diferencia de los conjuntos {1,2,3,4} y {1,3,5,7} es el conjunto {2,4}, sin embargo la diferencia de los conjuntos {1,3,5,7} y {1,2,3,4} es el conjunto {5,7}.
- Ejemplo: La diferencia del conjunto de las personas que juegan al fútbol y el conjunto de las personas que juegan a baloncesto es el conjunto de las personas que solo y exclusivamente juegan al fútbol.
Diferencia simétrica: El símbolo de esta operación es: Δ.
La diferencia simétrica de dos conjuntos A y B es otro conjunto el cual posee los elementos que o bien se encuentran en A, o bien se encuentran en B, pero no en los dos a la vez. A Δ B = C, donde C no tiene
- Ejemplo: La diferencia simétrica del conjunto de personas que juegan a fútbol y el conjunto de personas que juegan a baloncesto es el conjunto de personas que juegan sólo a fútbol y sólo a baloncesto, pero no que jueguen a ambos a la vez.
Teoría de conjuntos
La
teoría de conjuntos es una rama de la
lógica matemática que estudia las propiedades y relaciones de los
conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.
1
La teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas:
números,
funciones,
figuras geométricas,...; gracias a las herramientas de la
lógica, permite estudiar los fundamentos de aquella. En la actualidad se acepta que el conjunto de
axiomas de la
teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio
per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos
infinitos. En esta disciplina es habitual que se presenten casos de propiedades
indemostrables o
contradictorias, como la
hipótesis del continuo o la existencia de un
cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la
lógica.
Lógica matemática
La
lógica matemática, también llamada
lógica simbólica,
lógica teorética,
lógica formal o
logística,
1 es el estudio
matemático de la
lógica y su aplicación a otras áreas de la matemática y la
ciencia. Comprende la aplicación de las técnicas de la lógica formal a las matemáticas y el razonamiento matemático, y conversamente la aplicación de técnicas matemáticas a la representación y el análisis de la lógica formal. La investigación en lógica matemática ha jugado un papel crucial en el estudio de los
fundamentos de las matemáticas.
Álgebra booleana
Es una rama especial del álgebra que se usa principalmente en electrónica digital. El álgebra booleana fue inventada en el año 1854 por el matemático inglés George Boole.
El álgebra de Boole es un método para simplificar los circuitos lógicos (o a veces llamados circuitos de conmutación lógica) en electrónica digital.
Por lo tanto, también se llama como "Cambio de álgebra". Podemos representar el funcionamiento de los circuitos lógicos utilizando números, siguiendo algunas reglas, que son bien conocidas como "Leyes del álgebra de Boole".
También podemos hacer los cálculos y las operaciones lógicas de los circuitos aún más rápido siguiendo algunos teoremas, que se conocen como "Teoremas del álgebra de Boole". Una función booleana es una función que representa la relación entre la entrada y la salida de un circuito lógico.
La lógica booleana solo permite dos estados del circuito, como True y False. Estos dos estados están representados por 1 y 0, donde 1 representa el estado "Verdadero" y 0 representa el estado "Falso".
Lo más importante para recordar en el álgebra de Boole es que es muy diferente al álgebra matemática regular y sus métodos. Antes de aprender sobre el álgebra de Boole, vamos a contar un poco sobre la historia del álgebra de Boole y su invención y desarrollo.
Historia del álgebra de Boole
Como se mencionó anteriormente, el álgebra de Boole se inventó en el año de 1854, por el matemático inglés George Boole. Primero declaró la idea del álgebra de Boole en su libro "Una investigación de las leyes del pensamiento".
Después de esto, el álgebra de Boole es bien conocida como la forma perfecta para representar los circuitos lógicos digitales.
A fines del siglo XIX, los científicos Jevons, Schroder y Huntington utilizaron este concepto para términos modernizados. Y en el año de 1936, MHStone demostró que el álgebra de Boole es 'isomorfo' para los conjuntos (un área funcional en matemáticas).
En la década de 1930, un científico llamado Claude Shannon desarrolló un nuevo método de álgebra tipo "Cambio de álgebra" utilizando los conceptos de álgebra de Boole, para estudiar los circuitos de conmutación.
La síntesis lógica de las herramientas modernas de automatización electrónica se representa de manera eficiente mediante el uso de funciones booleanas conocidas como "Diagramas de decisión binarios".
El álgebra de Boole permite solo dos estados en un circuito lógico, como True y False, High and Low, Yes y No, Open and Close o 0 y 1.