viernes, 15 de marzo de 2019

Torres de hanoi

¿Qué son las torres de hanoi? Las Torres de Hanói es un rompecabezas o juego matemático inventado en 1883 por el matemático francés Édouard Lucas.1​ Este juego de mesa individual consiste en un número de discos perforados de radio creciente que se apilan insertándose en uno de los tres postes fijados a un tablero. El objetivo del juego es trasladar la pila a otro de los postes siguiendo ciertas reglas. El problema es muy conocido en la ciencia de la computación y aparece en muchos libros de texto como introducción a la teoría de algoritmos.
La fórmula para encontrar el número de movimientos necesarios para transferir n discos desde un poste a otro es: 2n - 1

¿Como se pueden resolver los algoritmos?el pro A la hora de resolver matemáticamente blema, se producen numerosas circunstancias matemáticas particulares respecto a la resolución. Son las siguientes:
  • La ficha número n (siendo 1 la más pequeña) se mueve por primera vez en el paso número 2^(n-1), y después de ese primer movimiento, se moverá cada 2^n movimientos. De este modo, la ficha 1, se mueve en 1, 3, 5, 7, 9... etc. La ficha 3, se mueve en 4, 12, 20, 28, 36... etc.
  • Y el número de veces que se mueve cada ficha es de 2^(n-k),siendo n el número de fichas y k igual a 1 para la ficha más pequeña.
  • El número de movimientos mínimo a realizar para resolver el problema es de (2^n)-1, siendo n el número de fichas.
  • Todas las fichas impares (siendo 1 la más pequeña) se mueven siguiendo el mismo patrón. Asimismo, todas las fichas pares se mueven siguiendo el patrón inverso a las impares. Por ejemplo: si se quiere mover un número impar de piezas desde la columna 1 hasta la 3, sucederá lo siguiente:
  • Todas las fichas impares seguirán este patrón de movimiento: 1 -> 3 -> 2 -> 1 -> 3 -> 2 -> 1 -> 3 -> 2 -> 1.
  • Todas las fichas pares seguirán este patrón de movimiento: 1 -> 2 -> 3 -> 1 -> 2 -> 3 -> 1 -> 2 -> 3
Estos patrones dependen únicamente del número de piezas. Si el número de piezas es par, los patrones de las impares serán los de las pares, y viceversa.
  • Uniendo la primera regla con la segunda, se sabe siempre qué pieza hay que mover y a qué columna hay que desplazarla, por lo que el problema queda resuelto.

La solución del problema de las Torres de Hanói es muy fácil de hallar, aunque el número de pasos para resolver el problema crece exponencialmente conforme aumenta el número de discos.Como ya se ha indicado, el número mínimo de movimientos necesarios para resolver un rompecabezas de la Torre de Hanoi es 2n - 1, donde n es la cantidad de discos.4
Una manera sencilla para saber si es posible terminar el "juego" es que si la cantidad de discos es impar la pieza inicial ira a destino y si es par a auxiliar.


¿Las torres de Hanoi son para resolver problemas de permutaciones o de combinaciones?


Permutaciones








Serie fibonacci

¿Qué es la serie fibonacci? En matemáticas, la sucesión o serie de Fibonacci es la siguiente sucesión infinita de números naturales:
       La espiral de Fibonacci: una aproximación de la espiral áurea generada dibujando arcos circulares conectando las esquinas opuestas de los cuadrados ajustados a los valores de la sucesión;1​ adosando sucesivamente cuadrados de lado 0, 1, 1, 2, 3, 5, 8, 13, 21 y 34.
La sucesión comienza con los números 0 y 1,2​ y a partir de estos, «cada término es la suma de los dos anteriores», es la relación de recurrencia que la define.
A los elementos de esta sucesión se les llama números de Fibonacci. Esta sucesión fue descrita en Europa por Leonardo de Pisa, matemático italiano del siglo XIII también conocido como Fibonacci. Tiene numerosas aplicaciones en ciencias de la computaciónmatemática y teoría de juegos. También aparece en configuraciones biológicas, como por ejemplo en las ramas de los árboles, en la disposición de las hojas en el tallo, en las flores de alcachofas y girasoles, en las inflorescencias del brécol romanesco, en la configuración de las piñas de las coníferas, en la reproducción de los conejos y en cómo el ADN codifica el crecimiento de formas orgánicas complejas. De igual manera, se encuentra en la estructura espiral del caparazón de algunos moluscos, como el nautilus.

¿Quién creo la serie fibonacci? Leonardo de Pisa, también conocido como Fibonacci (1170 – 1250) es un famoso matemático italiano famoso por difundir en Europa el sistema de numeración actualmente utilizado, esto es un sistema de numeración posicional en base decimal y un dígito de valor nulo (cero), y por idear la sucesión de Fibonacci.

¿Cómo es la serie? En matemáticas, la sucesión o serie de Fibonacci hace referencia a la secuencia ordenada de números descrita por Leonardo de Pisa, matemático italiano del siglo XIII:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,…


A cada uno de los elementos de la serie se le conoce con el nombre de número de Fibonacci.

Triangulo pascal

¿Que es un triángulo pascal? El triángulo de Pascal es un triángulo de números enteros, infinito y simétrico Se empieza con un 1 en la primera fila, y en las filas siguientes se van colocando números de forma que cada uno de ellos sea la suma de los dos números que tiene encima. Se supone que los lugares fuera del triángulo contienen ceros, de forma que los bordes del triángulo están formados por unos. Aquí sólo se ve una parte; el triángulo continúa por debajo y es infinito.

¿Para qué se usa el triángulo pascal? Este triángulo fue ideado para desarrollar las potencias de binomios. ... Esta expresión se denomina binomio de Newton. Esta fórmula del binomio de Newton desarrolla los coeficientes de cada fila en el triángulo de PascalEs por esto que existe una estrecha relación entre el triángulo de Pascal y los binomios de Newton.

¿Cómo se construye un triángulo pascal? El triángulo de Pascal se construye siguiendo un patrón como el que se muestra en la figura de abajo. Se comienza desde la cúspide con el número «1» hacia abajo(infinito), a modo de "árbol"; se clasifica en filas, empezando por la fila cero(el «1» de la cúspide). Este "árbol" tiene nodos, que son cada número que compone el triángulo. Si sumamos dos nodos nos dará de resultado el nodo situado debajo de estos dos, y así sucesivamente.
Las diagonales que empiezan desde el «1» situado en la cabeza del triángulo valen siempre 1.


Editar

Este triángulo fue ideado para desarrollar las potencias de binomios. Las potencias de binomios vienen dadas por la fórmula: {\displaystyle (a+b)^{n}}, dónde a y b son variables cualesquiera y n el exponente que define la potencia. Esta expresión se denomina binomio de Newton.
Esta fórmula del binomio de Newton desarrolla los coeficientes de cada fila en el triángulo de Pascal. Es por esto que existe una estrecha relación entre el triángulo de Pascal y los binomios de Newton.